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Abstract In this article, we give a detailed derivation
of the theoretical sequence leading from molecular data to
UV–visible absorption spectra, and back from absorption
spectra to molecular data, in the widely encountered case
of linearly absorbent molecular species homogeneously and
isotropically diluted in a homogeneous and isotropic trans-
parent matrix or solvent. At each step of the derivation,
assumptions and approximations are clearly explained and
references are provided for the justifications which are out
of the scope of the present article. The precision and the lim-
itations of such spectroscopic investigations are then under-
lined and quantified on two examples: a hypothetic academic
one-dimensional system and the Ni(H2O)2+

6 aqueous com-
plex. The present interdisciplinary article aims to contribute
to more efficient, and more and more necessary, interplays
and mutual interactions between theoreticians and experi-
mentalists by providing, to nonspecialists of both sides, a
rather complete but clear and accessible description of the
previously mentioned bijective sequence.
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1 Introduction

In a previous paper [13], we defined a new tool for the quanti-
fication of two-photon absorption, the two-photon absorption
strength, and we also explained how its values can be quan-
titatively extracted from experimental data. In a more recent
paper [15], we practically used it to quantify the enhance-
ment of two-photon absorption observed in fluorene oligo-
mers. Analyzing this enhancement, however, also requires
the quantitative extraction of one-photon absorption prop-
erties from experimental UV–visible absorption spectra. We
were however, and to our greatest surprise, unable to find,
among the literature to which we had access, and which rep-
resents several tenners of physical chemistry books and a
huge quantity of research articles, any equivalent of the der-
ivation we had performed for two-photon absorption but in
the case of one-photon absorption.

This is particularly astonishing, since the measurement of
one-photon absorption spectra [34] is nowadays an exten-
sively used technique for investigating the electronic prop-
erties of materials. It has indeed been successfully applied
to gas phase molecules [20], organic compounds [41], com-
plexes [31], polymers [24], clusters [29], biomolecules [5],
matrix isolated species [3], surfaces [10] and solids [26]. As
a consequence of its success, this technique has now been
taught for many years from the A level to the Master’s Degree
and hundreds of physical chemistry textbooks exist that deal
with this topic. Most of these books exhibit both a theoret-
ical and an experimental section which are fully detailed.
However, to our greatest disappointment, the description of
the quantitative link between these two descriptions of the
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same phenomenon is most often very limited. For UV–visible
absorption spectra of diluted species for example, which is
precisely the case we are here interested in, and which is
rather often encountered in every-day life, the formulae used
for extracting molecular data (transition energies and tran-
sition electric dipole moments) from experimental absorp-
tion spectra are generally given with no justification (see for
example [21]).

On the contrary of our previous papers, the present article
is exclusively dedicated to one-photon absorption spectra.
It aims to fill the previously described lack by providing a
clear and accessible derivation of the relations that allow
the extraction of electronic molecular data from UV–visible
absorption spectra in the particular case of molecular species
homogeneously and isotropically diluted in a homogeneous
and isotropic transparent matrix or solvent. As the reader will
observe, this link is less obvious than it could first appear.

This article aims to contribute to a more efficient col-
laboration between theoreticians and experimentalists by
making the previously mentioned derivation accessible to
nonspecialists of both sides, which means theoreticians who
are usually not involved in spectroscopic problems and spec-
troscopist, or more generally physicists and chemists, who
are not so used to theoretical chemistry. It is then written in
such a way that all previously described target readers can
easily understand it, and, as a consequence, information and
equations are reported in this paper that may appear obvious
for some of the readers. A special effort is however, achieved
to maintain it as compact as possible, and also to avoid exces-
sive simplifications which could lead to a deformed view of
the state of the art.

This paper is organized as follows. First, the theoretical
sequence leading from molecular data to UV–visible absorp-
tion spectra is presented. Second, the reverse procedure is
detailed and the methods usually used for the extraction of
electronic molecular data from UV–visible absorption spec-
tra are explained. At each step of the derivation, assumptions
and approximations are highlighted, as well as their limita-
tions and consequences. Third, these last points are illustrated
thanks to two typical examples: first an hypothetic academic
one-dimensional system and then the Ni(H2O)2+

6 aqueous
complex.

2 From molecular to experimental data

All numerical objects are here given in standard international
units [30].

2.1 Absorption coefficient and refractive index

All derivations reported in this article concern, in the absence
of other mention, a single diluted absorbent molecular entity.
However, on account on the linearity of all subsequent rela-

tions, the generalization to the case of a mixture of diluted
absorbent molecular entities is straightforward. The total
absorbance of the mixture (see below) is indeed equal to
the sum of the absorbance of all individual species.

From a general point of view, the equation that links the
electric field and the polarization within a nonmagnetic
dielectric medium is (1), where eω and pω represent the
ω-frequency Fourier components of the time- and space-
dependent electric field and polarization respectively, c the
speed of light and ε0 the vacuum permitivity [12].

�eω + ω2

c2 eω − ∇ (∇ · eω) = − ω2

ε0c2 pω (1)

As previously mentioned, we are here only concerned with
linear, homogeneous and isotropic media. Relation (1) then
simplifies into relation (2), where χω is a complex number
and represents the frequency dependent mesoscopic average
linear polarizability of the medium.

�eω + ω2

c2

(
1 + χω

ε0

)
eω = 0 (2)

A sample is now considered that consists of a single
linearly absorbent molecular species homogeneously and iso-
tropically diluted in a homogeneous and isotropic transparent
matrix, which is a particular case of linear, homogeneous
and isotropic nonmagnetic dielectric medium. The molecu-
lar concentration of the diluted compound is hereafter noted
N . This sample is assumed crossed by a planar and mono-
chromatic electromagnetic wave with frequency ω, whose
mathematical expression is aω exp (ikωuω · r), which is a
particular solution of Eq. (2). In this last expression, aω is
the polarization vector (not to be confused with the polariza-
tion of the medium) and kωuω is the wave vector, where uω

is a real unitary vector of space and kω a complex number,
such that relation (3) is verified.

k2
ω = ω2

c2

(
1 + χω

ε0

)
(3)

The light beam is here assumed being a plane wave, but
real light beams are of course not. Measured intensities of
real light beams are obtained through the integration of their
local intensities over their whole sections. However, because
of the linearity of Eq. (2), this does not make any difference in
the following treatment, which can be extended to any shape
of light beam.

A sample slice is now considered, whose characteristic
planes are assumed orthogonal to uω and whose thickness
is noted L . The absorbance Aω of this slice is then defined
by relation (4), where Iω (0) represents the average incom-
ing light beam intensity and Iω (Lu) the average transmitted
light beam intensity.

Aω = log10

(
Iω (0)

Iω (Lu)

)
(4)
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Within the restrictive framework of this study, the expres-
sion of the previously mentioned intensity, which is defined
by relation (5), is obtained by relation (6), where � and �
represent the real part and imaginary part operators, respec-
tively, which leads to expression (7) for the absorbance of
the sample.

Iω = ε0c2

2ω
� [

(eω)∗ × (∇ × eω)
]

(5)

Iω (r) = ε0c2 |aω|2 � (kω)

2ω
exp [−2� (kω) uω · r] (6)

A = 2L� (k)

loge (10)
(7)

The absorption coefficient of the molecular entity of inter-
est at frequency ω, εω, is, by definition, equal to ANA/NL,
where NA is Avogadro’s number, and verifies then here rela-
tion (8) [30].

εω = 2NA� (kω)

N loge (10)
(8)

For weakly absorbent media, which is a case quite fre-
quently encountered in every day life UV–visible absorption
spectra measurements,1 and which is mathematically char-
acterized by the fact that � (kω) is negligible with respect to
� (kω), relation (3) can be expressed as a limited develop-
ment with respect to � (χω) /� (χω) and relation (8) can be
converted into relation (9), where nω is the refractive index of
the medium and is related to its polarizability through relation
(10).

εω = ωNA� (χω)

Nε0cnω loge (10)
(9)

nω =
√

1 + � (χω)

ε0
(10)

2.2 Molecular polarizability

Within the previous section, no mention has been done of the
molecular properties of the absorbent species. The absorption
coefficient of the medium, which is an experimentally acces-
sible data, has indeed only been linked to the average mes-
oscopic polarizability of the medium at frequency ω. In this

1 The maximum measurable absorbance for usual spectrophotometer
is indeed around 3 and the tightest usable sample cell about 1-µm thin,
which makes the maximum value of Im(k) equal to 3.45 × 106 small-
est refraction index of usual samples is equal to 1 and the longest wave
length accessible with usual UV–visible spectrophotometers is 2,000
nm, which makes the smallest value of Re(k) equal to 3.14 × 106 m−1.
It can then be seen that all extreme experimental conditions have to be
met at the same time for Im(k) and Re(k) being of the same magnitude.
For more usual cases, like a 10 mm tight sample cell and an absorbance
of 1, the ratio Im(k)

/
Re(k) falls down to 3.66 × 10−5, which is, as a

matter of fact, negligible with respect to 1.

section, we now focus on the frequency dependent molecular
polarizability of the molecular entity of interest.

From a quantum mechanical point of view, a molecular
entity is characterized by its quantum eigenstates,2 which
are here represented by |m〉, where m is an integer num-
ber and where |0〉 represents the ground state of the system.
At this point of the derivation, no assumption is done about
the rovibronic nature of these eigenstates. Each one of these
states is associated to an energy Em and to an energetic width
�m which depends on the life-time τm of the state of interest
through Eq. (11), where h̄ represents the reduced Planck’s
constant.

�m = h̄

τm
(11)

As for a macroscopic system, the polarization of a molecu-
lar entity depends on the electric field applied. As previously
mentioned, only molecules exhibiting linear responses are
here considered (see reference [13] and references therein for
nonlinear responses). Within this framework, each Fourier
component πω of the molecular polarization linearly depends
on the Fourier component eω of the applied electric field
through relation (12), where α̂ (ω) is the first molecular polar-
izability tensor.

πω = α̂ (ω) · eω (12)

It can then be shown, using the time-dependent pertur-
bation theory [33], which is out of the scope of this paper,
that the matrix elements of α̂ (ω) depend on energies Em ,
on widths �m and on the transition electric dipole moments
〈m| µ |n〉 between the eigenstates of the molecular system
through relation (13), where q represents the current state of
the molecular system, i and j take their values among the
cartesian directions x , y and z, and where 	qm is defined by
relations (14) and (15).

αi, j (ω) = 1

h̄

∑
m �=q

{
〈q| µi |m〉 〈m| µ j |q〉

	qm − ω

+〈q| µ j |m〉 〈m| µi |q〉
	∗

qm + ω

}
(13)

	m = 1

h̄

(
Em − i

�m

2

)
(14)

	qm = �m − �q (15)

Em , �m and 〈m| µ |n〉 are theoretical data that can be
estimated using, for example, computational chemistry
programs, and molecular polarizabilities are then theoreti-
cally accessible via relation (13). The next step of this study
then of course consists in describing the link between meso-
scopic polarizability and molecular polarizability.

2 Dirac notations are used in this article. Their definitions and properties
are detailed in most quantum mechanics textbooks.
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2.3 Local field approximation

First must be decided which molecular entity has to be con-
sidered. Indeed, on the contrary of gas phase molecular enti-
ties, which are spatially well separated and then rather well
defined,3 each molecular entity of interest is here surrounded
by a quite large number of other solvent or matrix molecu-
lar entities whose presence directly influences the rotational,
vibrational and electronic properties of the molecular entity
of interest itself. The way the molecular entity has however,
to be chosen is unfortunately as unprecise as the definition
of a molecular entity itself [30].

The way the surrounding molecular entities are taken into
account strongly depends on the nature of both the molecular
entity of interest and the solvent or the matrix. For metallic
cations diluted in water, for example, well-organized com-
plexes appear that have to be treated as molecular entities
[23]. On the contrary, for ketones species diluted in alkane
species, for example, the interaction between the molecular
entity of interest and the solvent is rather weak [40] and the
influence of the solvent on the electronic properties of the
ketone can be rendered by an average effect, since no struc-
tural order appears.

An explicit and quantitative link between, on one hand,
molecular theoretically accessible data and, on the other
hand, macroscopic experimentally accessible data is mainly
required in two cases: for validating theoretical simulations,
and for extracting molecular data from experimental data.

Concerning the validation of theoretical simulations,
however, a notable exception exists. Computational simula-
tions can indeed be performed using two different strategies:
the periodic approach and the cluster approach.4 The first
method consists in explicitly simulating a set of solvent mol-
ecules and absorbent molecules gathered in a finite cell which
is periodically replicated by translation an infinite number
of time to fill the complete space [38]. In such a case, the
mesoscopic polarizability of the medium is directly accessi-
ble.5 Within the framework of the cluster approach, however,
which consists in modeling the properties of a unique spa-
tially limited molecular entity, and which is to our knowledge,
at the moment, the most extensively used while modeling
molecular properties, the calculated molecular polarizabil-
ity has to be converted to a mesoscopic polarizability for
achieving comparison with experiment.

3 Note that this may not be the case any more for gas phases under high
pressures or for systems exhibiting exiplexes or eximers.
4 Actually, hybrid methods also exist that combine both approaches
[37].
5 Depending on the number of absorbent molecules per cell, averaging
the calculated mesoscopic polarizability tensor over all directions of
space may be required.

One extensively used method for quantitatively linking
molecular and mesoscopic polarizabilities is the so called
local field approximation [9,28]. It is assumed that the molec-
ular entity of interest is located in a spherical empty cavity
buried within the solvent or the matrix, this last being consid-
ered continuous. It is then shown that the frequency-depen-
dent electric field e(loc)

ω felt by the molecular entity located
in the cavity depends on the external (mesoscopic) applied
frequency-dependent electric field eω via relation (16).

e(loc)
ω = eω + 1

3ε0
pω (16)

From a general point of view, molecules tend to adapt their
orientation to the applied electric field. Taking this phenom-
enon into account has been achieved by Onsager [32]. The
importance of this reorientation however, strongly depends
on the frequency of the applied electromagnetic field, and
is, in particular, rather small in the UV–visible range. It will
then not be considered further in this article.

2.4 Lorentz factors

The mesoscopic polarization of a material is, by definition,
equal to the sum of the molecular polarizations of all molec-
ular entities contained in the material. As a direct conse-
quence, for a homogeneous material consisting in a mixture
of B molecular species indiced with b, relation (17) is veri-
fied, where Nb represents the molecular quantity of species b
and p(b)

ω the average mesoscopic polarizability due to b type
molecular entities.

pω =
B∑

b=1

Nbp(b)
ω (17)

From relation (17), using relations (16) and (12), and
assuming an isotropic material, it is shown that relation (18)
is verified, where the (b) exponent is added to the previously
used notations to specify that a data refers to a the molecular
species b, and where ᾱ

(b)
ω is defined by relation (19). Lω is

called Lorentz factor and is defined by relation (20).

χ̄ (b)
ω = Lωᾱ(b)

ω (18)

ᾱ(b)
ω = 1

3

[
α(b)

xx (ω) + α(b)
yy (ω) + α(b)

zz (ω)
]

(19)

Lω = 1

1 − 1
3ε0

∑B
b=1 Nbᾱ

(b)
ω

(20)

If the dilution is high enough, the difference between the
contribution of the diluted molecular entities and the contri-
bution of the solvent is negligible with respect to the con-
tribution of the solvent. As a consequence, for sufficiently
diluted molecular entities, it is shown, using a limited devel-
opment, that relations (21) and (22) are verified, where nS
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represents the refractive index of the solvent. 6

� (χω) = L2
ω

B∑
b=1

Nb�
(
ᾱ(b)

ω

)
(21)

Lω = n2
S + 2

3
(22)

In relation (21), the presence of the Lorentz factor at the
power 2 may look surprising considering relations (17), (18)
and (22). It however, simply comes out from the fact that
Lω, before being approximated, also depends on ᾱ

(b)
ω , which

has to be taken into account while performing the previously
mentioned limited development, which gives rise to relation
(21).

2.5 Absorption coefficient

It then comes out, using relations (9) and (18), that, within
the framework of a single absorbent molecular species, the
absorption coefficient depends on the molecular polarizabil-
ity of the absorbent molecular entity through relation (23),
where ᾱω now refer to the only absorbing molecular species
contained by the material.

εω =
(

n2
S + 2

3

)2
ωNA� (ᾱω)

ε0cnS loge (10)
(23)

Finally, using relations (13) and (19), we end up with
expression (24), where gq represents the fraction of absorbent
molecular entities in state |q〉.

εω =
(

n2
S + 2

3

)2
NAω

3h̄ε0cnS loge (10)

×
+∞∑
q=0

gq

+∞∑
m=1

�m

2

µ2
qm(

ωqm − ω
)2 + �2

m
4

(24)

2.6 Oscillator strength

Relation (24) may be transformed using oscillator strengths
fqm , which is a pure theoretical object, whose definition is
given by relation (25) [7]. In that relation, me represents the
electron mass and e the elementary charge.

fqm = 2me

3e2h̄
ωqmµ2

qm (25)

6 Refractive indices of solvents, as well as those of the cells used for
UV–visible absorption spectra measurements, generally depend on the
frequency associated to the electromagnetic radiation. They can how-
ever, usually be assumed constant over a wide range of frequencies
without significant lost of precision. The extreme values of the corre-
sponding frequency window depend of course on the chosen solvent or
cell and have to be checked before interpreting measurements [1,16].

Oscillator strengths are used while describing atomic spec-
tra [7] and are also extensively used by theoretical chemistry
computational codes [27]. Indeed, from a practical point of
view, oscillator strengths do not bear any unit and take val-
ues around unity for spin- and spatially-authorized electronic
transitions in small molecules.

A particularity of oscillator strengths is that, for any molec-
ular entity containing N electrons, they fulfill the Thomas–
Reiche–Kuhn sum rule (26) [18,25,35,39].∑

m

fqm = N (26)

Since relation (24) explicitly links molecular data (tran-
sition energies and transition electric dipole moments) to
experimental data (absorption coefficient) it should a priori
be possible to extract molecular data from UV–visible absorp-
tion spectra. This is the topic of the next section.

3 From UV–visible absorption spectra to molecular data

3.1 Hypothetic set of isotropically and homogeneously
distributed akinetic isolated molecules

For isolated molecules, energetic widths �m are generally
small if compared to energy differences between rovibronic
eigenstates [4]. As a consequence, UV–visible absorption
spectra of hypothetic sets of homogeneously and isotropically
spread akinetic isolated molecular entities consist in sets of
ideally well separated rays, each corresponding to a single
rovibronic transition of the molecular entity of interest. In
such a particular case, rays are fitable using Eq. (24) and
parameters �m , ωqm and µqm

(= ∣∣µqm
∣∣) are directly acces-

sible. Is is however, also true that ωqm parameters are equal
to the frequencies that correspond to maxima of εω, and
that µqm parameters are obtained using one of both integra-
tive methods represented by relations (27) and (28), where∫
ωqm

means that the integration is restricted to the single ray
located at ωqm .

∫
ωqm

εω

ω
dω = NAπ

3h̄cε0n loge (10)

(
n2 + 2

3

)2

gqµ2
qm (27)

1

ωqm

∫
ωqm

εdω = NAπ

3h̄cε0n loge (10)

(
n2 + 2

3

)2

gqµ2
qm

(28)

Both expressions directly result from the integration of
εω/ω and εω respectively using relation (24). On the contrary
of what could be first thought looking at relations (27) and
(28), relation (28) is not an approximation of relation (27).
Both are indeed mathematically exact and use the only
assumption that the ray of interest is perfectly isolated. From
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a practical point of view, however, relation (27) presents the
advantage that the integral can be evaluated over frequencies
or wave lengths—both commonly used unit scales for repre-
senting absorption spectra—without further transformation.
Relation (29) is indeed verified, where λ represents the wave
length.∫
ωqm

εω

ω
dω =

∫
λqm

ελ

λ
dλ (29)

3.2 Set of isotropically diluted molecules

Gas phase absorption spectra of small molecules under low
temperatures and pressures may fulfill most criteria corre-
sponding to the previously mentioned hypothetic set of
isotropically and homogeneously distributed akinetic and
isolated molecules [21]. In such cases, it is indeed possible
to study each absorption ray individually. Such a procedure
is however, not usable for diluted molecules.

Indeed, let us now consider a single diluted molecular spe-
cies. Each molecular entity of interest now exhibits, because
of the influence of the solvent or of the matrix, many rovibra-
tional degrees of freedom. As a consequence, each individual
electronic transition is now associated to a huge density of
rovibrational eigenstates and does no longer appear as a set
of well separated rays but as a wide band. The integration of
each individual rovibronic absorption ray is then no longer
feasible and the corresponding molecular data can not be
experimentally accessed anymore. As shown below, how-
ever, thanks to additional assumptions, different molecular
data can be extracted.

First, the Born–Oppenheimer approximation7 has to be
used [17]. Each rovibronic eigenstate |m〉 is then assumed
equal to the product of a rovibrational eigenstate |mrot, mvib〉
and an electronic eigenstate |melec〉, as represented in equa-
tion (30).

|m〉 = |mrot, mvib, melec〉 = |mrot, mvib〉 |melec〉 (30)

The electric dipole moment operator µ depends however,
on all electronic and nuclear coordinates. As a consequence,
the Born–Oppenheimer approximation is not sufficient in
itself to allow the direct extraction of molecular data from
electronic absorption spectra and the Franck–Condon
approximation is then usually additionally used [17,21].
Within this framework, the transition dipole moment between
two rovibronic eigenstates is assumed independent with
respect to the rovibrational parts of the involved rovibron-
ic eigenstates, which leads to relation (31).

〈m| µ |n〉 = µmelecnelec 〈mrot, mvib| nrot, nvib〉 (31)

7 The justification of this approximation is too remote from the purpose
of this article and is not discussed further here.

One of the most problematic point while investigating the
electronic absorption bands of a diluted molecular species is
that these bands very often overlap. Actually, isolated elec-
tronic absorption bands are rather rare. However, before treat-
ing more complex cases, let assume at the moment that we
are here dealing with a well isolated absorption band result-
ing from an unique electronic transition between electronic
states |qelec〉 and |melec〉. In such a case, expressions (27) and
(28) give rise to relations (32) and (33).

∫
band

εω

ω
dω = NAπ

3h̄cε0nS loge (10)

(
n2

S + 2

3

)2

µ2
qelecmelec

×
∑

qrot,qvib

gq

∑
mrot,mvib

〈qrot, qvib| mrot, mvib〉2

(32)∫
band

εωdω = NAπ

3h̄cε0nS loge (10)

(
n2

S + 2

3

)2

µ2
qelecmelec

×
∑

qrot,qvib

gq

∑
mrot,mvib

ωqm 〈qrot, qvib| mrot, mvib〉2

(33)

In many every day life cases, electronic absorption spectra
of diluted molecular species are measured at the thermody-
namic equilibrium and at room or low temperature. It may
then be assumed that all molecular entities of interest are in
their electronic ground state or, at least, in a single electronic
state |qelec〉, which leads to relation (34). This assumption is
of course only valid if the life time of the electronic state of
interest is much longer than the timescale of the experiment
and if the energy differences between this electronic state
of interest and the other electronic states of the system are
much larger than kB T , where kB represents the Boltzmann
constant and T the temperature. In other cases, statistical or
time-dependent populations have to be considered for the dif-
ferent electronic states of the system, which leads to slightly
more complete expressions that strongly depends on the exact
experimental device. Therefore, such cases will not be con-
sidered further in this article.

∑
qrot,qvib

gq = 1 (34)

Thanks to relation (34) and on account of the closure rela-
tion (35), expression (32) can easily be simplified into (36).

∑
mvib

|mrot, mvib〉 〈mrot, mvib| = 1 (35)

∫
band

εω

ω
dω = NAπ

3h̄cε0nS loge (10)

(
n2

S + 2

3

)2

µ2
qelecmelec

(36)
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On the contrary, since ωqm depends on mvib and mrot,
relation (35) does not allow any further simplification of rela-
tion (33) and an additional approximation is then required:
frequency ωqm is assumed constant over the whole absorp-
tion band. The constant value which is most often chosen is
that corresponding to the frequency ωmax giving the largest
contribution to the integral, i.e. the frequency for which εω

reaches a maximum. This approximation is of course valid
only if the absorption band is tight enough and leads to rela-
tion (37).

1

ωmax

∫
band

εωdω = NAπ

3h̄cε0nS loge (10)

(
n2

S + 2

3

)2

µ2
qelecmelec

(37)

From a mathematical point of view, relation (37) is of
course an approximation of relation (36), even if they are ini-
tially resulting from two different but mathematically exact
integration methods and, as shown in the next sections, they
can, in most cases, equally be used without further lost of
precision.

4 One-dimensional harmonic oscillator

In this section is presented an academic and fully analytically
solvable example whose purpose is to allow the quantifica-
tion of the uncertainty introduced by the Franck–Condon
approximation and of the divergence between relations (36)
and (37).

A quantum system with two harmonic electronic states
and a single nuclear coordinate, X , associated to a mass M ,
is considered. No rotation is involved in this example and the
temperature is assumed null, which implies that the absor-
bent system is initially in the vibrational ground state of the
electronic ground state. Both harmonic electronic states are
assumed to be associated to the same vibrational frequency
σ and arranged as pictured in Fig. 1. The value of interest
is here assumed to be the so-called vertical transition dipole
moment µ01 between both electronic states.

4.1 Franck–Condon approximation

The Franck–Condon approximation is here only tested on
relation (32). A similar study performed on relation (33)
would however, lead to the same conclusions. The electronic
part of the transition electric dipole moment between both
electronic states of the system is here assumed depending on
X through relation (38), where K is a constant.

µelec = µ0 (1 + K X) (38)

X

E

X0

δ

Electronic
ground state

Electronic
excited state state

Vibrational
states

Fig. 1 Hypothetic one-dimensional system characterized by two har-
monic electronic states, both associated to the vibrational frequency
σ , and the single coordinate, X , associated to the mass M . Electronic
energy minima are met at X = 0 (E = 0) and X = X0 (E = δ)

Considering this assumption and the previous ones, rela-
tion (32) has here to be replaced by relation (39).

∫
band

εω

ω
dω = NAπ

3h̄cε0nS loge (10)

(
n2

S + 2

3

)2

µ2
0

×
∑
mvib

〈0vib| 1 + K X |mvib〉2 (39)

Closure relation (35) then allows the replacement of the
sum in the right-hand side member of relation (39) by
〈0vib| (1 + K X)2 |0vib〉. The eigenstates of the harmonic
oscillator are analytically well known [11]. Its ground state
is, in particular, associated to wave function (40), which leads
to relation (41).

0vib (X) =
(

Mσ

π h̄

) 1
4

exp

(
− Mσ X2

2h̄

)
(40)

∫
band

εω

ω
dω = NAπ

3h̄cε0nS loge (10)

×
(

n2
S + 2

3

)2

µ2
0

(
1 + K 2h̄

2Mσ

)
(41)

This relation has to be compared with relation (36), which
was obtained by applying the Franck–Condon approxima-
tion. It can be seen that, within the framework of this
particular example, applying the Franck–Condon approxi-
mation would result in an overestimation of a factor√

1 + K 2h̄/(2Mσ) of the vertical transition electric dipole
moment µ0. It is remarkable that h̄/(2Mσ) is equal to the
average quadratic displacement of the harmonic oscillator
over its ground state. From a numerical point of view, how-
ever, even a fluctuation of ±25% of µelec between X = 0 and
X = ±√

h̄/(2Mσ) leads to an overestimation of only 6%
in the determination of the vertical transition electric dipole
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moment µ0, which is rather acceptable with respect to the
other uncertainty sources, as shown within the next sections.

The divergence with and without the Franck–Condon
approximation strongly depends on the molecular system of
interest itself and no general rule can be drawn. From an
experimental point of view, however, this kind of situation
is only met in molecular systems that exhibit one or several
floppy vibrational modes that strongly affect the electronic
wave functions [14], or for spatially forbidden transitions
that become observable in presence of vibronic couplings
(cf. Sect. 5). In such cases, a more precise approach has to be
considered like, for example, the Herzberg–Teller approxi-
mation [2,19,36]. In most other cases however, the Franck–
Condon approximation is rather acceptable.

4.2 Integration methods

As previously mentioned, relation (37) is an approximation
of relation (36). The purpose of this section is to provide
an order of magnitude of this assumption by quantifying the
divergence between these two expressions within the frame-
work of the previously presented simple academic example.
The Franck–Condon approximation is here assumed and the
electronic part of the transition electric dipole moment is then
now considered independent on X and equal to µ0. Using
then the fact that ω0,m is equal to δ/h̄ + σmvib, expressions
(42) and (43) are derived from relations (33) and (32).

∫
band

εω

ω
dω = NAπµ2

0

3h̄cε0nS loge (10)

(
n2

S + 2

3

)2

(42)

1

ωmax

∫
band

εωdω = NAπµ2
0

3h̄cε0nS loge (10)

(
n2

S + 2

3

)2

×δ + 1
2 Mσ 2 X2

0

h̄ωmax
(43)

Finally, since δ + Mσ 2 X2
0/ is equal to the vertical tran-

sition energy ωvert, i.e. the difference between the potential
energy curves corresponding to both electronic states at the
geometry of the energy minimum of the ground state, relation
(44) is verified.

1

ωmax

∫
band

εωdω = NAπµ2
0

3h̄cε0nS loge (10)

(
n2

S + 2

3

)2
ωvert

ωmax

(44)

It can then be seen that the error made by using the approx-
imated expression (37) is here equal to (ωvert − ωmax/ωmax)

and that both integration method are perfectly equivalent
if ωvert and ωmax are equal. In real cases, however, ωmax

strongly depends on the way the rovibrational absorption
bands are overlapping together and no general rule can here
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Fig. 2 UV–visible absorption spectrum of the Ni(OH2)
2+
6 aqueous

complex (see Appendix A for experimental details)

be drawn. Numerical values are provided within the next
section. The previously mentioned error is however, gener-
ally negligible in both following cases, both being possibly
simultaneously met:

– δ 
 Mσ 2 X2
0/2, where the vibrational correction is neg-

ligible with respect to ωvert, which corresponds to tight
absorption bands located at reasonably high absorption
energies. An extreme illustration of this case is met in f-f
transitions of lanthanides complexes [23].

– Mσ 2 X2
0/2 
 h̄σ , which corresponds to the classical

limit of the harmonic oscillator, but which also corre-
sponds to an absorption from low lying vibrational states
of the electronic ground state to a high lying vibrational
states of the electronic excited state.

For concluding, using the Franck–Condon approximation
and/or the approximate relation (37) leads to the extraction
of values stained with uncertainties. These last are how-
ever, rather small, especially if compared to the uncertainties
resulting from the numerical integration itself, as shown in
the next section.

5 UV–visible absorption spectrum of the Ni(OH2)
2+
6

aqueous complex

Let now consider a realistic molecular entity, the Ni(OH2)
2+
6

aqueous complex, and focus on its d–d electronic transitions.
Since these lasts are spatially forbidden but spin-allowed,
they give rise to absorption bands whose maxima correspond
to absorption coefficients of a few L mol−1 cm−1, as rep-
resented in Fig. 2. We will here only consider the complex
band located around 14,000 cm−1. Considering an Oh geom-
etry for the Ni(OH2)

2+
6 complex, this band corresponds to a

3 A2g → 3T1g transition [8]. The exact origin of the com-
plexity of this band is still under discussion and will then
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not be investigated further in this article. We are here only
concerned with the extraction of molecular data from this
absorption band, considering that it is due to the single pre-
viously mentioned electronic transition. It has here however,
to be emphasized that the fact that an absorption is observed
whereas the corresponding transition is spatially forbidden
most likely results from vibronic couplings inside the molec-
ular entity. As a consequence, the data which is extracted
from the absorption spectrum is not the vertical transition
dipole moment, which is of course null since the transition is
spatially forbidden, but an apparent electric transition dipole
moment which depends on the values taken by the electronic
part of the electric transition dipole moment for geometries
close to the most likely one (cf. Sect. 4.1).

5.1 Integration technics

As previously mentioned, the numerical integration of
absorption bands is a great source of error. Indeed, as can be
seen in Fig. 2, the absorption coefficient does not decrease
down to zero between the absorption band of interest and
the neighboring ones. This essentially comes both from the
overlapping of the electronic absorption bands and from the
presence of noise in the spectrum. The question then rises of
the method which has to be used for measuring the integral.

Many procedures exist for evaluating band integrals and
all of them are, more or less, arbitrary. We present here four of
them: the direct integral technic (noted D), the rapid gaussian
technic (noted RG), the single gaussian fitting technic (noted
SG) and the multiple gaussian fitting technic (noted MG).
Here are their principles:

Technic D This technic first consists in arbitrary choosing a
range of frequencies on which the absorption band of interest
give a significant contribution. If no neighboring band is pres-
ent and the absorption coefficient is decreasing down to zero,
then the whole frequency range of the experimental spectrum
is used. If no neighboring band is present, but the absorption
coefficient is not decreasing down to zero, an arbitrary limit
has to be chosen, otherwise, the integral diverges. Finally, if
a neighboring band is present, the frequency corresponding
to the minimum of absorption coefficient between the band
of interest and its neighbor is used as a limit for the frequency
range. The second step of the technic then consists in numer-
ically integrating the absorption function (εω or εω/ω) over
the chosen frequency range. Note that this technic is not so
bad as it could first appear. Indeed, when two bands of almost
equal intensities are overlapping, then, the missing part of the
band of interest located outside the arbitrary chosen range of
frequencies compensate with the contribution of the overlap-
ping band located within the limits of this frequency range.
This technic however, fails for overlapping bands of different
intensities and for very noisy spectra.

Technic RG This technic consists in assuming that the absorp-
tion band of interest has a Gaussian shape described by the
function G0 exp

[− (ω − ω0)
2 /δ2

]
. G0 is then equal to the

maximum of the absorption function and the full width at
half maximum (FWHM) � is equal to 2δ loge (2). As a
consequence, the integral of the absorption band is equal
to G0�

√
π/ loge (4) (

√
π/ loge (4) ≈ 1.279). This technic

is very simple but quite appealing. It is indeed rather rapid,
since it does not require any explicit integral measurement,
and takes advantage of compensation effects: if an absorption
band is dissymmetric, what is lost on one side of the band by
the gaussian approximation, is gain on the other side.

Technic SG The starting point of this method is identical to
that of the RG method. The gaussian function is here how-
ever, explicitly fitted on the absorption band of interest. Note
that this method does not necessarily gives better results than
the RG method.

Technic MG Finally, for complex absorption bands, the fit-
ting procedure may require the simultaneous usage of several
gaussian functions. The methodology is then the following: a
first function is fitted, and other additional functions are then
sequentially introduced as long as the agreement between the
experimental and the fitted functions is not sufficiently accu-
rate, which means that the difference between the integrals
obtained before and after adding the new function remains
larger than the target precision.

The reason why gaussian functions are here used, even if
absorption rays have lorentzian shapes (see relation (24) in
Sect. 2.5), is due, first, to the gaussian shape of the wave
function corresponding to the vibrational ground state in
the harmonic oscillator approximation and, second, to the
gaussian shape of the Boltzmann distribution which governs
the population of the rovibrational states of the electronic
ground state. Both tends indeed to give a pseudo-gaussian
shape to electronic absorption bands of diluted molecules.

There is no good or bad method among those previously
presented. Their quality indeed depends on the shape of the
band of interest and on the target precision.

5.2 Extraction of molecular data

As can be seen on Fig. 2, εω presents a maximum at
13,889 cm−1, whereas εω/ω presents a maximum at
13,793 cm−1 (not graphically represented). It can then be
seen that both values are not exactly equal and differ by
about 0.7%, which actually remains quite acceptable. Let
us then chose ωmax equal to 13,889 cm−1. On the basis of the
approximations presented in the previous sections, this val-
ues should be equal to the vertical transition frequency ωvert.
One may however, hesitate while measuring ωmax because
the absorption function εω exhibits two maxima whose inten-
sities are rather similar at 13,889 and 15,209 cm−1. A possible
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Table 1 Transition electric
dipole moments extracted from
the experimental absorption
spectrum represented in Fig. 2
for the band located around
14,000 cm−1

Reported values are obtained
using integration technics D, RG,
SG and MG, and by integrating
εω/ω (relation (36)) or εω (rela-
tion (37)). Technical details are
reported in Appendix B

Integration technic From εω/ω (10−2 D) From εω (10−2 D) Absolute deviation

(10−2 D) (%)

D 6.859 6.975 +0.116 +1.7

RG 7.397 7.457 +0.060 +0.8

SG 6.827 6.912 +0.085 +1.2

MG 6.727 6.828 +0.101 +1.5

Average value (10−2 D) 6.953 7.043

Quadratic deviation (10−2 D) 0.261 0.245

Quadratic deviation (%) 3.8 3.5

solution would be to propose an intermediate value of
14,549 ± 660 −1, with then an uncertainty of about 5%. We
will here however, strictly stick to the definition we gave for
ωmax and keep the value of 13,889 cm−1.

From the previous paragraph, it appears that even the
experimental determination of the absorption energy, which
first looks as a simple task, may give rise to significant uncer-
tainties of several percents. We however, here voluntary chose
a complex case and much precise values are usually obtained.
The same conclusion can however, unfortunately not be
drawn for the determination of the transition electric dipole
moment, as shown below.

In Table 1 are reported the values obtained using the dif-
ferent integration technics previously presented and both
integration methods depicted by relations (36) and (37).
Technical details are reported in Appendix B.

Values reported in the fourth and fifth columns, confirm
the quite small character of the deviation between both inte-
gration methods (36) and (37). Indeed, whatever the integra-
tion technic, both values obtained using these methods only
differ by about 1%. Only the D technic gives rise to a slightly
higher deviation (1.7%), but this simply results from the quite
large frequency range used in that case, which makes the
deviation between εω/ω and εω/ωmax more sensitive. This
does however not change the fact that the deviation result-
ing from the choice of the integration method remains much
lower than that resulting from the choice of the integration
technics (3.5 and 3.7%, respectively).

If these last uncertainties are larger than those previously
mentioned, they however, remain quite reasonable consid-
ering the complexity of the absorption band and the raw
character of some of the technics used, like D and RG in
particular. This result may appear surprising, but it must not
be forgotten that we are here dealing with integrals, and some
variations of the absorption function may look rather large
but have few effects on the integrated area located under the
curve representing the function.

In this particular case, the RG technic is apparently giving
the worst result, since other three values only deviate by 0.8

and 0.9% respectively for both integration methods. This is
however, not a general result. The previously presented inte-
gration technics do indeed not have intrinsic qualities. The
relevance of their numeric results strongly depend on the
shape of the absorption function. We then strongly suggest
that, while extracting molecular data from absorption bands,
several integration technics are used and compared, the devi-
ation between them being used as a confidence criterium.

6 Conclusion

In this article, we performed a clear sequential derivation of
the relations leading from microscopic molecular theoreti-
cally accessible data to macroscopic experimentally acces-
sible data within the framework of UV–visible absorption
spectra of optically linear molecular entities homogeneously
and isotropically diluted in transparent homogeneous and
isotropic matrices or solvents. At each step of the deriva-
tion, the assumptions used and their limitations have been
emphasized. The return sequence allowing the extraction of
molecular data from UV–visible absorption spectra of diluted
molecules have then also been derived and illustrated using
two examples: an academic one and an experimental one.

It has then been shown that, for extracting electronic
molecular data, both the Born-Oppenheimer and the Franck–
Condon approximation are generally required, which makes
it only possible to extract apparent transition electric dipole
moments and transition energies which might be slightly dif-
ferent from the values accessible by other means like theory
or gas phase measurements.

From a numerical point of view, it has also been shown
that using any of both integration methods (36) or (37) does
not make so much difference, and that the greatest uncertain-
ties results from integration technics. Note that the highest
deviation we here obtained between the integration technics
we used is only of 3.7% but this becomes much worse when
absorption bands are strongly overlapping.
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Finally, from a more general point of view, the same
approximations and methodology can be used for extract-
ing molecular data from multiphoton absorption spectra, as
it has already been shown, for example, within the framework
of two-photon absorption [13].

Appendix A: experimental details

Preparation of the Ni(OH2)2+
6 solution The solution

was prepared by dissolving 205.2 ± 0.2 mg of solid NiSO4

(NiSO4 · 6H2O, 262.83 ± 0.01 g mol−1) in water up to reach
50.00 ± 0.05 mL. The dissolution reaction is complete (the
maximum solubility of NiSO4 in water is such that it can
represent up to 27.55% of the weight of the solution at 298 K
[6]) and all Ni2+ ions are then involved in Ni(OH2)2+

6 com-
plexes. The concentration of the solution is then equal to
(1.561 ± 0.002)×10−2 mol L−1.

UV–vis absorption spectrum measurement Spectra was mea-
sured thanks to a JASCO VIS–UV V-550 spectrophotometer
[22] whose uncertainty is 0.15% concerning the
absorbance and 1 nm concerning the wavelength, using a

10.00 ± 0.01 mm thick HELMA QS-10 Suprasil® quartz
cell whose refraction index is uniform between 250 and
2,000 nm and equal to 1.458 at 20◦C [16]. The uncertainty
related to the absorption spectrum is then equal to 0.4% con-
cerning the absorption coefficient and to 0.3% concerning
the wave number.

Appendix B: integration details

In this section are gathered the details concerning the integra-
tion of the absorption band exhibited by aqueous Ni+2 ions
around 14,000 cm−1. Refractive index of the solvent (water):
1.33283 at 20 ◦C [1].

Technic D Frequency range: 10,870–19,920 cm−1 for εω and
10,881–20,000 cm−1 for εω/ω.

Technic RG FWHM: 3,571 cm−1 for εω and 3,500 cm−1 for
εω/ω. Maxima: 0.2189 m2 mol−1 at 13,889 cm−1 for εω and
1.5824 × 10−7 m3 mol−1 at 13,793 cm−1 for εω/ω.

Technic SG G0 = 0.2144 m2 mol−1, ω0 = 14,354 cm−1, and
δ = 2, 261 cm−1 for εω. G0 = 1.5091 × 10−7 m3 mol−1,
ω0 = 14, 172 cm−1, and δ = 2, 255 cm−1 for εω/ω. Fre-
quency range used for the fitting procedure: see D technic
above.
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Fig. 3 Adsorption band located around 14,000 cm−1 (dashed line) par-
tially (thick solid line) fitted thanks to 5 gaussian functions (dotted lines)

Table 2 Fitted parameters for the MG technic

Function G0 ω0 δ

(m2 mol−1) (cm−1) (cm−1)

For εω

1 0.17197 14,210 2, 149.5

2 −0.33134 14,685 946.7

3 0.07167 15,265 202.2

4 0.92397 15,299 1, 333.7

5 −0.69581 15,577 1, 174.1

Function G0 ω0 δ

(10−7 m3 mol−1) (cm−1) (cm−1)

For εω/ω

1 0.95591 13,455 1, 804.9

2 0.63062 13,848 937.5

3 0.04745 15,261 204.9

4 0.59310 15,339 842.7

5 0.36309 16,311 1, 318.8

Technic MG Five gaussian functions have here been used, as
represented in Fig. 3 for εω (the corresponding figure but for
εω/ω is very similar and then not represented). The frequency
range used for the fitting procedure has been restricted to
12,000–17,000 cm−1. The corresponding parameters are
gathered in Table 2.
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